TAYLOR ENGINEERING, INC.

Martin County Four Mile Beach Resilience

June 20, 2023

Presentation Outline

- Project Information
- Resilience Metrics
- Beach Resilience Metrics
- Hurricanes Ian and Nicole
- Comparison of Beach Resilience Metrics
- Summary
- Looking Forward

> prepare, resist, recover, and <u>adapt</u>

Martin County SPP

- Northern-most 4 miles of Martin County (R-1 to R-25)
 County Line & Glasscock Beach (R-1)
 - South of the Marriott (R-25)
- Provides storm damage reduction in addition to recreation and environmental benefits

Martin County SPP Resilience

 The County is investigating options to modify the project design in the future to increase the performance of the beach fill and enhance resilience

- Our Path:
 - Summarize project history & available data
 - > Analyze historic beach trends
 - > Begin discussions with permitting agencies
 - Modeling in XBEACH
 - > ... recommendations and next steps

Project Authorization

- Authorized in the Water Resource Development Act 1990 (WRDA 1990)
- GDM- General Design Memorandum
 - > USACE, 1994
 - > Describes the project as:
 - (1) a protective beach berm and storm dune along approximately 4 miles (mi) of Hutchinson Island, FL;
 - (2) periodic nourishment of the restored beach and adjacent shoreline as needed and justified for the life of the project;
 - and (3) extensive, multiyear beach performance monitoring.
 - > Federal participation (R-1 to R-23) expires in 2045

Historic Project Performance

- Performance highly dependent on storm activity
 - Consistent erosion from the sub-aerial and nearshore
 - Slow natural recovery and onshore movement of a sand bar (if conditions allow)
 - Rarely a full recovery and sand moves beyond the monitoring area
- Increased shoreline retreat and/or erosion in the northern portion of the project and increased stability to the south
- Dune growth!

Dune Growth- maximum elevation

2022-035 Martin Co. SPP 2022

hys Mon\GIS\MXD\MartinCoSPP 2022 DunePlotsPorPOS.mxd

Dune Growth- dune width and edge of veg

Beach Nourishment History and Design Templates

ow Area	Borrow Area	Placement Area	Placed Volume (cy)	Project Year
rt Shoal	Gilbert Shoal	R-1 to R-25	1,340,000	1995
rt Shoal	Gilbert Shoal	R-16.2 to R-22.3	178,000	2001
rt Shoal	Gilbert Shoal	R-13.5 to R-16.2	126,000	2002
rt Shoal - 2,229,78 (Gilbert Shoal	R-1 to R-25.6	885,000	2005
cie Shoal over 17 ye	St. Lucie Shoal	R-1 to R-25	613,017	2013
cie Shoal	St. Lucie Shoal	R-1 to R-19.8	427,763	2018

* **•** Flood Control & Coastal Emergencies (FCCE) funding; 20-30% of volume

<u>GDM</u>: Renourishment of 589,000 cy every 11 years (53,600 cy/yr) <u>LRR</u>: Renourishment of 787,800 cy every 13 years (60,600 cy/yr)

Project Design Parameters

- 4 construction templates
 > Advanced fill
- Variable reference datums
 - > Tidal vs geodetic datums
 - MHW; MSL; MLW
 - NAVD88; NGVD29

Project Design Parameters

Design template – –

- Dune- 20 ft wide crest, +12.5 ft above MSL
- Berm- 35 ft wide, +8.0 ft above MSL
- Foreshore slope-1V:8.5H to MLW then 1V:20H
- Construction template features ~80 ft extension of the berm

500

Resilience Defined

- Resilience is defined by *Executive Order 13653* as the ability to:
 - > Anticipate,
 - > Prepare for,
 - > And adapt
 - to changing conditions and:
 - > Withstand,
 - > Respond to,
 - And recover rapidly from disruptions
- Resilience is a *trait*
- How can we measure resilience? What are the metrics?

Resilience Metrics

- Depends on what system you want to evaluate as resilient:
 - Economic
 - > Social/Human
 - Environmental
 - Transportation
 - > Power/Energy
- Specific to coastal infrastructure, measure damage caused by:
 - Inundation
 - > Wave Damage
 - Erosion

Resilience to Sea Level Rise

- Resilience is defined as the ability to:
 - > Anticipate,
 - > Prepare for,
 - > And adapt
- Adaptation is an <u>action</u>
 Requires planning

- What planning/SLR scenario to use?
- From Martin County SPP's 1993 General Design Memorandum:

67. A contributing factor to the susceptibility to storm damage is relative sea level rise. If the upper limit of relative sea level rise actually occurs, it will increase the shoreline recession and storm damages estimated within this report.

How to Measure Beach Resilience

How to Measure Beach Resilience

Elevations

Simple

Complex

- Contour tracking (MHW, berm, dune)
- Maximum elevation (dune)
- Width/shoreline position
- Volume analysis
- Vegetation coverage
- Beach Change Envelope (USGS)
- Buffer Width (USACE)
- Coastal Vulnerability Index (USGS)
- Coastal Resilience Index (USACE- ASBPA, APTIM)
- (Dune) Engineering Design Parameter (Stevens)

short-term response/storm

damage reduction

benefits

SHOCKS & STRESSORS

-Sea level rise

-Storm intensity, frequency, and duration

-Recovery rate

Beach Condition 06/22

Beach Condition 9/26/22 (Pre-Ian)

Beach Condition 9/28/22 (During Ian)

Beach Condition 9/28/22 (During Ian)

Beach Condition 9/29/22 (Post-Ian)

Beach Condition 11/7/22 (Pre-Nicole)

Beach Condition 11/9/22 (During-Nicole)

Beach Condition 11/10/22 (Post-Nicole)

Beach Condition 11/15/22 (Post-Nicole)

Input Parameters- Wave & Water Level Data

- Jensen Beach Wave Buoy
 0.42 miles offshore; depth ~33ft
- NOAA National Data Buoy Center (NDBC)

- USGS Flood Event Viewer
- NOAA Tides and Currents

Taylor Engineering | 26

Contour Tracking & Volume Analysis

- Berm width
- Berm elevation
- Berm volume
- Dune width
- Dune elevation
- Dune volume
- Water level
- Wave information
- Other:

Coastal Resilience Index

$$CRI = a + b + c + d + e$$

$$a = \frac{PE}{PE_0} \qquad c = \frac{PW - MR}{PW_0} \qquad d = \frac{DE - (MS + MHW)}{CF_0}$$
$$b = \frac{PE * PW * (1 - s)}{PE_0 * PW_0} \qquad e = \frac{WR_0}{WR}$$

- Berm width
- Berm elevation
- Berm volume
- Dune width
- Dune elevation
- Dune volume
- Water level
- Wave information- Runup
- Other: fines

Engineering Design Parameter

 $EDP = \frac{intensity}{resilience} = \frac{PEI^4}{B_{width}^2 * D_{vol}}$

$$SEI = \sum_{t_d} IEI(t_i) = \sum_{t_d} W_*(t_i) \left[\frac{0.068H_b(t_i) + S(t_i)}{B + 1.28H_b(t_i)} \right]$$

- Berm width
- Berm elevation
- Berm volume
- Dune width
- Dune elevation
- Dune volume
- Water level
- Wave information- H_b
- Other: width of active surf zone
 Taylor Engineering | 27

RESILIENCE INDEX		JUNE- OCT	OCT- DEC	
а	PE	-	-0.1	
b	VD	-	-0.2	
С	PW	-0.3	+0.1	
d	CF	-0.2	-0.2	
e WR		-0.9	-0.2	
CRI		-1.4	-0.6	

	Coastal Resilience Index					
	CRI = a + b + c + d + e					
					20 -	
DESIG TEMP	GN PLATE			(a/	15 - 10 -	
JUNE	2022	6.2	change in resilience factors	Elevation (ft-NA	5 -	
осто	BER 2022	4.8	c PW -0.3 d CF -0.2 e WR -0.9		-5 - -10 - 20	
DECE	MBER 2022	4.2	a PE -0.1 b VD -0.2 c PW +0.1 d CF -0.2 e WR -0.2			

	DESIGN TEMP	JUNE 2022	OCT 2022	DEC 2022
INTENSITY	2	3	26	46
RESILIENCE	33,600	70,600	64,500	63,400
EDP	0.00038	0.00076	6.7	70.9

	DESIGN TEMP	JUNE 2022	ОСТ 2022	DEC 2022
INTENSITY	↓↓	↓ (↑ ↑	†††
RESILIENCE	↓↓↓	† †	↓ ↓	↓ I
EDP	low INT- avg annual conditions low RES- dune volume	low INT- avg conditions high RES- dune volume	high INT- Ian Iow RES- decrease in berm width	very high INT- Nicole low RES- decrease in dune vol, increase in berm width

Low EDP- resilient beach and/or low intensity storm High EDP- vulnerable beach and/or high intensity storm **Engineering Design Parameter**

EDP =	$\frac{intensity}{resilience} = \frac{1}{E}$	PEI ⁴ B ² width*D _{vol}
DESIGN TEMPLATE	0.00038	↓↓ Intensity ↓↓↓ Resilience
JUNE 2022	0.00076	↓ Intensity ↑ Resilience
OCTOBER 20	22 6.7	↑↑ Intensity ↓↓ Resilience
DECEMBER 2	2 022 70.9	↑↑↑ Intensity ↓ Resilience

Contour Tracking & Volume Analysis		Coastal Resilience Index		Engineering Design Parameter		
	A shoreline	subaerial	CRI = a + b + b	c + d + e	$EDP = \frac{intensity}{resilience} =$	$\frac{PEI^4}{B_{width}^2 * D_{vol}}$
DESIGN TEMPLATE	position (ft) 	Δ vol (cy/ft) 			0.00038	↓↓ Intensity ↓↓↓ Resilience
JUNE 2022	12	-0.3	6.2	change in resilience factors	0.00076	↓ Intensity ↑↑ Resilience
OCTOBER 2022	8	+0.5	4.8	c PW -0.3 d CF -0.2 e WR -0.9	6.7	<pre> ↑↑Intensity ↓↓Resilience </pre>
DECEMBER 202	2 2 -7	-11.4	4.2	a PE -0.1 b VD -0.2 c PW -0.1 d CF -0.2 e WR -0.2	70.9 Taylor Engin	↑↑↑ Intensity ↓ Resilience eering 31

Conclusions

- Beach resilience directly related to "buffer" volume and recovery time/conditions
- Many ways to measure beach resilience... which way is the best?
 - Martin SPP is a good candidate for testing resilience measures due to its extensive survey data and buoy
 - Provides necessary data for long term planning and innovation that is needed to protect coastal infrastructure against our current and future stressors
 - Resilience indices highly dependent on distribution of terms... should these be beach specific?
 - Selection of parameters is subjective; assumptions often needed
- How do we make changes to a project over the project lifetime due to SLR or increased erosion rates? prepare, resist, recover, and <u>ADAPT</u>

Wendy Laurent, P.E. wlaurent@taylorengineering.com